
Software architecture:
between "rigid process"
and "somehow I manage"

Advanced Research Computing Centre, UCL, London

Jasmin Jahić

jj542@cam.ac.uk

14.08.2024

Agenda

▪ Overview of architectural processes and their
desired outcomes

▪ The overhead that software architecture
processes introduce

▪ Customization

▪ AI in Software Engineering (and Software
Architecture)

Software engineering – Scenario 1

Software engineering – Scenario 2

The Problem

The Problem domain

How do I personally understand the problem?

How does a team understand the problem?
Common understanding?

projectcartoon.com

The Solution domain

How does a team understand the solution and
what needs to be coded? Common
understanding?

Issues

No common
understanding
of the problem

No common
understanding
of the solution

This actually
works!
(sometimes)

Well, if you are…

Enthusiastic Knowledgeable Lucky

Results

I know how to
code!

No one cares Margareth

Projects in Software Engineering

▪ Onboarding new team members

▪ Taking over an existing project

▪ Parallelisation of work

▪ Integration of work created by different teams

▪ Prioritisation of new features

▪ Making decisions about new features based on the existing design

▪ Discussion between different teams

▪ Discussion between different groups of stakeholders (for example,
management and developers)

Additional activities

▪ Organisation (timeline, division of work, roles and responsibilities)

▪ Common understanding

▪ Knowledge transfer

[1]

We want to

▪ Make success reproducible

▪ Enable incremental development

▪ Enhance communication between
stakeholders

▪ Support making hard design decisions
while managing trade-offs

▪ Enable reasoning and management of
changes as a system evolves

▪ Establish processes that are reproducible
and enhance system quality

Superhero developers

No memory loss Stay forever or transfer
knowledge properly

Can translate between
different stakeholders

Common understanding
of problems and solutions

Can we really get people with all of these
qualities?

Enthusiastic Knowledgeable Lucky

No memory loss Stay forever or transfer
knowledge properly

Can translate between
different stakeholders

Common understanding
of problems and solutions

„Somehow I manage“ is not good
enough

Implicit
software
architecture

Make all
these actions
explicit…

…and document them.

Impractical but relevant – V model

[2]

[3]

SPECIFICATION OF ARCHITECTURE DRIVERS

Business

Natural language

Links to documents

Increase sale for 15%.

Increase a reputation.

A unique functionality.

Functionality

Use Cases

User Stories / Epics

Template scenario

User registration.

Web shop.

Constraints

Natural language

Use open source.

Use Android.

Do not use QR codes.

Quality

Template scenario

Performance,
Maintainability,
Extendibility, Safety,
Security, Accessibility,
Deplorability,
Reliability, Scalability

QUALITY PROPERTIES TEMPLATE
ID Unique identifier Status [Open, Defined, Solved, …]

Name Name of scenario Owner Responsible for the

scenario

Quality Related quality attribute: exactly

one attribute should be chosen.

Stakeholders Stakeholders involved

Quantification

Environment Context applying to this scenario.

May describe both context and

status of the system.

Stimulus The event or condition arising

from this scenario.

Response The expected reaction of the

system to the scenario event.

[3]

DESIGN DECISION TEMPLATE

Decision name

Decision ID

Description ...

...

Rationale (Pros, Advantages) Assumptions & Risks (Constraints)

... ...

Scaling Factors Trade-offs

... ...

[3]

ARCHITECTURE SOLUTION TEMPLATE

Driver name

Driver ID

Steps ... The steps necessary to fulfil the scenario....

Decisions Accepted Rejected

Rationale (Pros) Assumptions and Risks (Cons)

... ...

Scaling Factors Trade-offs

... ...

[3]

HOW TO MANAGE DECISIONS AND
GUIDE THE IMPLEMENTATION?

SOFTWARE SYSTEM
ARCHITECTURE

Solving logical problems

Programming languages and libraries

Development methodologies

Processes and infrastructure

Logical patterns and algorithms (e.g., search
problem)

Source code; Syntax and semantics.
Frameworks; Codding patterns; Problem
solving using programming languages as tools

Collaboration: productivity and satisfying
customers needs; E.g., Agile, Waterfall

Software
system architecture

Source code version control system;
Continuous engineering; DevOps; ChatOps

Business
architecture

Complexity management; Design decisions
(design patterns and anti-patterns); Quality
properties; Communication and governance

How to think

Development and craft

Team work; Team level
management; Engineering

Efficient engineering

Project and system level
management; System

engineering

Capabilities, end to end value delivery,
information, and organizational structure

Enterprise level
management. Business

administration

Decisions

ABSTRACTION IS THE KEY

ARCHITECTURE
COMPONENTS

• “In the Component-based Software Engineering (CBSE)

discipline, components are seen as standalone service

providers, being, therefore, more abstract than objects

and classes.” (Bass, Clements, & Kazman, 1997), (Garlan,

Monroe, & Wile, 2000), (Medvidovic & Taylor, 2000),

(Roshandel, Schmerl, Medvidovic, Garlan, & Zhang,

2004).

• “A component is a software element that conforms to a

component model and can be independently deployed

and composed without modification according to a

composition standard.” (Heineman & Councill, 2001).

• “A component is a unit of composition with contractually

specified interfaces and explicit context dependencies

only. A software component can be deployed

independently and is subject to composition by third-

parties.” Szypersky (Szyperski C. , 2002).

ARCHITECTURE
COMPONENTS

• Stand alone service providers

• Independent deployment

• Independent executable entities

• Explicit context dependencies (if any)

• More abstract than classes and objects.

• Should be reused

• Components are software elements that

conform to a component model

• Have interfaces

COMPONENT
INTERFACES

• “A collection of service access points, each of

them including a semantic specification”

(Bosch, 2000)

• “Mechanisms to define assembly constraints in

the part model before assembling the

component into the assembly” (Smith, 2004)

• “An entity provided or realized by a

component, which comprises a set of operations

performed by a hardware or software element

in the system.” (IBM, 2012)

COMPONENT
INTERFACES

• Service access point

• Assembly constraint

• Set of operations performed by a hardware or

software element in a system.

• Coupling

• Interface types:

• Provided interface

• Required interface

TEXT IS NOT THE
BEST ABSTRACTION

Decisions Visualisation

Visual documentation – what is the
difference?

Modelling profiles

▪ Visual elements
▪ Their definitions
▪ Colours, symbols, size, position, etc.

▪ Example: Human-computer interaction

▪ UML?

Diagram(s) using the modelling profile

ONE, TWO, FIVE? WHO WILL USE IT? WHY?

Decisions Visualisation Perspective

Architectural views [4]

C4 ARCHITECTURE VIEWS - CONTEXT

https://c4model.com/

[5]

https://c4model.com/

C4 ARCHITECTURE VIEWS - CONTAINER

https://c4model.com/

[5]

https://c4model.com/

C4 ARCHITECTURE VIEWS - COMPONENT

https://c4model.com/

[5]

https://c4model.com/

C4 ARCHITECTURE VIEWS - CODE

https://c4model.com/

[5]

https://c4model.com/

A process

[6] [7] [8]

Explicit
software
architecture
sounds great!

Who does this? Almost no one.

Overhead (documenting
abstractions and
processes)

▪ Creating the first version (including the
setup and templates).

▪ Maintenance effort:
▪ Update as the

implementation/process changes.
▪ Ensure consistency (especially

problematic in large documents)

▪ Consuming the documentation:
▪ How easy it is to find the information

that stakeholders need?
▪ How easy it is to understand the

information?

▪ Follow a process

▪ Overhead vs benefits?

Actually, about that coding Margareth…

Explicit vs Implicit
architecture

▪ We always do the same set of things (either
explicitly or implicitly)

▪ Problem

▪ Solution

▪ Coding

▪ Process

▪ …

▪ And we can fail in both cases (in a different
way)

Customization

What are we trying to solve? Why are we
trying to make something explicit?

Why?

What are we trying to solve?

How? (considering why)

Modelling profile Views
Process for ensuring
traceability and
consistency

Process for
introducing changes

Tools
Documentation
formats

What are we trying to solve?

Cost/benefits analysis

Understand the need Customize existing practices Maximize benefits/minimize
overhead

Oh wait, what is software
architecture?

It depends…

Software architecture

• “The software architecture of a system is the set of structures needed to
reason about the system. These structures comprise software elements,
relations among them, and properties of both.”, Bass, Clements, & Kazman,
Software Architecture in Practice, Fourth Edition, 2021

• “Software Architecture is the fundamental organization of a system
embodied in its components, their relationships to each other and to the
environment and the principles guiding its design and evolution” (ISO,
2011)

• “Software architecture is the set of components needed to reason about
the system, design decisions behind those components, and their
discarded design alternatives.”, Jasmin Jahić

Don´t forget
about AI

AI in Software Engineering
▪ Software Architecture

▪ Need to understand context around problems and
solutions

▪ Coding

▪ Testing

▪ Deployment

▪ Delivery

▪ Other ops

How a t-shirt stopped this autonomous car in its tracks - https://www.carexpert.com.au/car-
news/how-a-t-shirt-stopped-this-autonomous-car-in-its-tracks

Waterfall

Waterfall in the Age of AI

Agile Scrum

Agile Scrum in the Age of AI

What is the Value that Humans bring?

I know how to
code!

No one cares Margareth – we have AI

Typical Example of Digitalisation
Bakery – Two Pigeons

Bakery Digitalisation

Online presence
Website (presentation, orders)

Social media (updates)

Accounting software

How can AI help a
bakery owner with
digitalisation (in
future)?

▪ Go to GitHub, there is a CoPilot

▪ It will generate all the code
(Node.JS, JavaScript, can even
create a database)

▪ Then, you just need to patch it
(use ChatGPT) and deploy it

▪ Oh, you will need a server

▪ And hosting

▪ And perhaps a cloud-based
solution

▪ „According to the German Bread Institute,
over 3,000 different types of bread and
other baked goods are sold in Germany
every day.“

▪ https://www.germany.travel/en/experienc
e-enjoy/german-bread-and-baked-
goods.html#:~:text=German%20bread%20
and%20baked%20goods&text=According%
20to%20the%20German%20Bread,sold%2
0in%20Germany%20every%20day.

https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day

We know
Software
Engineering
will change

We just do not
know how

Ongoing Projects

▪ AI and Software Architecture: reusing solutions [9]

▪ Benefits and overheads: AI vs human, a coding project.

▪ AI in Software Engineering manifesto: what do we hope to gain from
AI in Software Engineering?

▪ jj542@cam.ac.uk

Managing
Software
Architecture

▪ https://advanceonline.cam.ac.u
k/courses/managing-software-
architecture

https://advanceonline.cam.ac.uk/courses/managing-software-architecture
https://advanceonline.cam.ac.uk/courses/managing-software-architecture
https://advanceonline.cam.ac.uk/courses/managing-software-architecture

References

▪ [1] K. Smolander, "Four metaphors of architecture in software organizations: finding out the meaning of architecture in practice,"
Proceedings International Symposium on Empirical Software Engineering, Nara, Japan, 2002, pp. 211-221, doi:
10.1109/ISESE.2002.1166942.

▪ [2] Concept of Operations, Leon Osborne, Jeffrey Brummond, Robert Hart, Mohsen (Moe) Zarean Ph.D., P.E, Steven Conger,
example https://web.archive.org/web/20090705102900/http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14158.htm

▪ [3] Jens Knodel and Matthias Naab. 2016. Pragmatic Evaluation of Software Architectures (1st. ed.). Springer Publishing Company,
Incorporated.

▪ [4] Philippe Kruchten: The 4+1 View Model of Architecture. IEEE Softw. 12(6): 42-50 (1995)

▪ [5] https://c4model.com/

▪ [6] Continuous Architecture in Practice: Software Architecture in the Age of Agility and DevOps, Murat Erder, Pierre Pureur, Eoin
Woods

▪ [7] F. Helwani and J. Jahić, "ACIA: A Methodology for identification of Architectural Design Patterns that support Continuous
Integration based on Continuous Assessment," 2022 IEEE 19th International Conference on Software Architecture Companion
(ICSA-C), Honolulu, HI, USA, 2022, pp. 198-205, doi: 10.1109/ICSA-C54293.2022.00046.

▪ [8] Brian Fitzgerald, Klaas-Jan Stol, Continuous software engineering: A roadmap and agenda, Journal of Systems and Software,
Volume 123, 2017

▪ [9] Jasmin Jahic, "State of Practice: LLMs in Software Engineering and Software Architecture", International Conference on
Software Architecture (Hyderabad, India) (ICSA 2024)

Questions

	Slide 1: Software architecture: between "rigid process" and "somehow I manage"
	Slide 2: Agenda
	Slide 3: Software engineering – Scenario 1
	Slide 4: Software engineering – Scenario 2
	Slide 5: The Problem
	Slide 6: The Problem domain
	Slide 7: How do I personally understand the problem?
	Slide 8: How does a team understand the problem? Common understanding?
	Slide 9
	Slide 10: The Solution domain
	Slide 11: How does a team understand the solution and what needs to be coded? Common understanding?
	Slide 12: Issues
	Slide 13: This actually works! (sometimes)
	Slide 14: Well, if you are…
	Slide 15: Results
	Slide 16: I know how to code!
	Slide 17: No one cares Margareth
	Slide 18: Projects in Software Engineering
	Slide 19: Additional activities
	Slide 20: We want to
	Slide 21: Superhero developers
	Slide 22: Can we really get people with all of these qualities?
	Slide 23: Implicit software architecture
	Slide 24: Make all these actions explicit…
	Slide 25: Impractical but relevant – V model
	Slide 26
	Slide 27: Specification of architecture drivers
	Slide 28: quality properties Template
	Slide 29: Design Decision Template
	Slide 30: Architecture solution Template
	Slide 31: How to manage decisions and guide the implementation?
	Slide 32: Software System Architecture
	Slide 33
	Slide 34: Abstraction is the key
	Slide 35: Architecture components
	Slide 36: Architecture components
	Slide 37: Component interfaces
	Slide 38: Component interfaces
	Slide 39: Text is not the best abstraction
	Slide 40
	Slide 41: Visual documentation – what is the difference?
	Slide 42: Modelling profiles
	Slide 43: Diagram(s) using the modelling profile
	Slide 44
	Slide 45: Architectural views
	Slide 46: C4 architecture views - Context
	Slide 47: C4 architecture views - Container
	Slide 48: C4 architecture views - Component
	Slide 49: C4 architecture views - Code
	Slide 50: A process
	Slide 51: Explicit software architecture sounds great!
	Slide 52: Who does this? Almost no one.
	Slide 53: Overhead (documenting abstractions and processes)
	Slide 54: Actually, about that coding Margareth…
	Slide 55: Explicit vs Implicit architecture
	Slide 56: Customization
	Slide 57: What are we trying to solve? Why are we trying to make something explicit?
	Slide 58: Why?
	Slide 59: What are we trying to solve?
	Slide 60: How? (considering why)
	Slide 61: What are we trying to solve?
	Slide 62: Cost/benefits analysis
	Slide 63: Oh wait, what is software architecture?
	Slide 64: Software architecture
	Slide 65: Don´t forget about AI
	Slide 66: AI in Software Engineering
	Slide 67: How a t-shirt stopped this autonomous car in its tracks - https://www.carexpert.com.au/car-news/how-a-t-shirt-stopped-this-autonomous-car-in-its-tracks
	Slide 68: Waterfall
	Slide 69: Waterfall in the Age of AI
	Slide 70: Agile Scrum
	Slide 71: Agile Scrum in the Age of AI
	Slide 72: What is the Value that Humans bring?
	Slide 73: I know how to code!
	Slide 74: No one cares Margareth – we have AI
	Slide 75: Typical Example of Digitalisation
	Slide 76: Bakery Digitalisation
	Slide 77: How can AI help a bakery owner with digitalisation (in future)?
	Slide 78
	Slide 79: We know Software Engineering will change
	Slide 80: Ongoing Projects
	Slide 81: Managing Software Architecture
	Slide 82: References
	Slide 83: Questions

