Software architecture:
between "rigid process"”
and "somehow | manage"

Advanced Research Computing Centre, UCL, London
Jasmin Jahi¢

ji542@cam.ac.uk

14.08.2024




Agenda

Overview of architectural processes and their
desired outcomes

The overhead that software architecture
processes introduce

Customization

Al in Software Engineering (and Software
Architecture)




Software engineering — Scenario 1

ldea Coding Software product



Software engineering — Scenario 2

@O0

Software product ldea Understand the code Coding Software product
(hopefully better)




The Problem

Problem |dea



The Problem domain

Problem ldea




How do | personally understand the problem?

Problem



How does a team understand the problem?
Common understanding?

eeeeeeeeee




Lk

How the customer How the project leader " How the analyst How the programmer What the beta testers How the business
explained it understood it designed it wrote it received consultant described it

=l

How the project was What operations customer was as supported ] marketing ] customer
documented installed billed advertised really needed

projectcartoon.com




The Solution domain




How does a team understand the solution and
what needs to be coded? Common
understanding?




YIS

No common
understanding
of the problem

J

No common
understanding
of the solution

/




SOMEHOW.

| I MANAGE
This actually e Gt o Lot YO0

works!
(sometimes)




Well, if you are...

Enthusiastic Knowledgeable Lucky



Results




| know how to
code

(@

)/

— N

O »

o

O

O D

Growth

Business

Success

Strategy
ne

r
Busi

mﬁ

gsl bl

SO\ Ut g
Sue

BUS\ness

Say

| a8t

es

Busi

Gr 0



No one cares Margareth




Projects in Software Engineering

= Onboarding new team members |
= Taking over an existing project Y
= Parallelisation of work

= |[ntegration of work created by different teams

" Prioritisation of new features
* Making decisions about new features based on the existing
= Discussion between different teams |

= Discussion between different groups of stakeholders (for exa
management and developers)



Additional activities

» Organisation (timeline, division of work, roles and responsibilities)
" Common understanding
" Knowledge transfer

Literature Language
. .
[1] [ Past Present Future ]
o ¢

Decisions Blueprint



We want to

= Make success reproducible
= Enable incremental development

= Enhance communication between
stakeholders

= Support making hard design decisions
while managing trade-offs

= Enable reasoning and management of
changes as a system evolves

= Establish processes that are reproducible
and enhance system quality



Superhero developers

_ihiad
'MEETING

No memory loss Stay forever or transfer Can translate between Common understanding
knowledge properly different stakeholders of problems and solutions



Can we really get people with all of these
gualities?

Knowledgeable Lucky

,2Somehow | manage” is not good
enough

e

No memory loss Stay forever or transfer Can translate between Common understanding
knowledge properly different stakeholders of problems and solutions



Implicit
software

architecture




...ahd document them.

Make all
these actions
explicit...




2]

Impractical but relevant —V model

< —\/erification and Validation-

Concept of
Operations

Project
definition

Requirements
and Architecture

Detailed Design

Operations and
Maintenance

Integration, Test,
and Verification

( _____

Verification and

System

Validation

\

Implementation

Project
Test and
Integration



Process and methodology

System’s purpose -

Translates intoﬁ

System’s fu
(Functiona

Business drivers *

Wishes and

nctionality
| drivers)

Constraints with  for

System’s quality
(Quality drivers)

Translates into4

Drivers - what architects need to

AN

concerns -
equirements

Solution space: all
adequate solutions

know to engineer the system?

Creativity

Experience

Documented (books,
papers, blogs, ...)

Customer

Design space exploration (DSE)

—>

Make
decisions to
address a
driver

Compose
decisions into
a solution

Discard the alternatives

Implement

Architect

Document




SPECIFICATION OF ARCHITECTURE DRIVERS

Business Functionality Constraints Quality

Natural language Use Cases Natural language Template scenario
Links to documents User Stories / Epics Use open source. Performance,
Increase sale for 15%. Template scenario Use Android. Maintainability,

: : , Extendibility, Safety,
Increase a reputation. User registration. Do not use QR codes. Security, Accessibility,

A unique functionality. Web shop. geflir?bﬂg% il
eliability, Scalability




[3]

QUALITY PROPERTIES TEMPLATE

ID Unique identifier Status [Open, Defined, Solved, ...]
Name Name of scenario Owner Responsible for the
scenario
Quality Related quality attribute: exactly | Stakeholders | Stakeholders involved
one attribute should be chosen.
Quantification
Environment Context applying to this scenario.
May describe both context and
status of the system.
Stimulus The event or condition arising
from this scenario.
Response The expected reaction of the

system to the scenario event.




[3] DESIGN DECISION TEMPLATE

Decision name

Decision ID

Description

Trade-offs

Rationale (Pros, Adva

Scaling Factors




[3]

ARCHITECTURE SOLUTION TEMPLATE

Driver name
Driver ID
Steps

Decisions Accepted Rejected

Rationale (Pros) Assumptions and Risks (Cons)
Scaling Factors Trade-offs




HOW TO MANAGE DECISIONS AND
GUIDE THE IMPLEMENTATION?

S



Enterprise level
management. Business
administration

Business Capabilities, end-to-end value delivery,
architecture information, and organizational structure

Complexity management; Design decisions
(design patterns and anti-patterns); Quality
properties; Communication and governance

Project and system level Software

management; System system architecture
engineering

Source code version control system;

Efficient engineering Processes and infrastructure Continuous engineering; DevOps; ChatOps

Team work; Tez.am Ieyel Development methodologies Collaboration: productmty and satisfying
management; Engineering customers needs; E.g., Agile, Waterfall

Source code; Syntax and semantics.
Development and craft Programming languages and libraries Frameworks; Codding patterns; Problem
solving using programming languages as tools

Logical patterns and algorithms (e.g., search

How to think Solving logical problems problem)

0y ' § 84! ' SOFTWARE SYSTEM
.‘ . ARCHITECTURE



Decisions




A d .( / |
A AR
‘ i\ T ,(
. _ - v., ,

P~
1]
M
1]
-
T
24
2
O
T
:
E=
02
M
<G




* “In the Component-based Software Engineering (CBSE)
discipline, components are seen as standalone service
providers, being, therefore, more abstract than objects
and classes.” (Bass, Clements, & Kazman, 1997), (Garlan,
Monroe, & Wile, 2000), (Medvidovic & Taylor, 2000),
(Roshandel, Schmerl, Medvidovic, Garlan, & Zhang,
2004).

« “A component is a software element that conforms to a
component model and can be independently deployed
and composed without modification according to a
composition standard.” (Heineman & Councill, 2001).

« “A component is a unit of composition with contractually
specified interfaces and explicit context dependencies
onlyy, A software component can be deployed
independently and is subject to composition by third-
parties.” Szypersky (Szyperski C., 2002).




Stand alone service providers
Independent deployment
Independent executable entities

Explicit context dependencies (if any)

More abstract than classes and objects.
Should be reused

Components are software elements that
conform to a component model

Have interfaces



* “A collection of service access points, each of
them including a semantic specification”
(Bosch, 2000)

* “Mechanisms to define assembly constraints in
the part model before assembling the
component into the assembly” (Smith, 2004)

e “An entity provided or realized by a
component, which comprises a set of operations
performed by a hardware or software element
in the system.” (IBM, 2012)




Service access point

Assembly constraint

Set of operations performed by a hardware or
software element in a system.

Coupling

Interface types:
* Provided interface

* Required interface







Decisions Visualisation




Visual documentation — what is the
difference?

a) b)

Component1  feerenennn Component 2

Component 1 <€ > Component 2

| |

Component 3 Component 3
Data base Data base



Modelling profiles

= \/isual elements
= Their definitions
= Colours, symbols, size, position, etc.

= Example: Human-computer interaction

= UML?




Diagram(s) using the modelling profile

& f

ONE, TWO, FIVE? WHO WILL USE IT? WHY?




Decisions Visualisation Perspective




Architectural views

[4]

[

I

[ & ]




[5] C4 ARCHITECTURE VIEWS - CONTEXT

Personal Banking
Customer

{Person]

A customer of the bank, with
personal bank accounts.

Views account
balances, and Sends e-mails to
makes payments
using

Internet Banking System
[Software System]
Sends e-mail

Allows customers to view using
information about their bank
accounts, and make payments.

Gets account
information from,
and makes
payments using

\ 4



https://c4model.com/

[5] C4 ARCHITECTURE VIEWS - CONTAINER

Personal Banking
Customer

{Person]

A customer of the bank, with
personal bank accounts.

Visits

bigbank.com/ib Views account Views account

balances, and balances, and Sends e-mails to
makes payments makes payments
using using

Mobile App
ngle-Page Application

Delivers to the Sl lCM:;:ﬂMMIGIﬁJ [Container: Xamarin]

customer's web

browser Provides all of the Internet banking
functionality to customers via their
web browser.

Makes API calls to Makes API calls to Sends e-mail
[ISON. A using
MTF

API Application
Reads from and [Container: java and Spring MVC]

writes to = Provides Internet banking
functionality via a JSON/HTTPS API.

— Makes

APlcallsto — —

Internet Banking System
| Y 1

Container diagram for Internet Banking System

r diz rn



https://c4model.com/

[3]

C4 ARCHITECTURE VIEWS - COMPONENT

Sign In Controller

[Component: Spring MVC Rest Controller]

Allows users to sign in to the Internet
Banking System.

Security Component
[Companent: Spring Bean]

Provides functionality related to
signing in, changing passwords, etc.

API Application
(s J

[Container: Oracle Database Schema]

Stores user registration information,
hashed authentication credentials,
access logs, etc.

Mobile App

[Container: Xamarin]

Provides a limited subset of the
Internet banking functionality to
customers via their mobile device.

Single-Page Application
[Container: JavaSeript and Angular]

Provides all of the Internet banking
functionality to customers via their
web browser.

Makes API calls to

kes API calls to
5 \TTR:

4 F

Reset Password Controller
[Component: Spring MVC Rest Contraller]

Allows users to reset their passwords
with a single use URL.

E-mail Component
[Component: Spring Bean]

Sends e-mails to users.

Sends e-mail

Component diagram for Internet Banking System - API Application
T c P pp t

Accounts Summary
Controller
[Component: Spring MVC Rest Controller]

Provides customers with a summary
of their bank accounts.

Mainframe Banking
System Facade

[Component: Spring Bean]

A facade onto the mainframe
banking system.



https://c4model.com/

C4 ARCHITECTURE VIEWS - CODE

InternetBankingSystemException
I

com.bigbankplc.internetbanking.component.mainframe

MainframeBankingSystemFacade

MainframeBankingSystemFacadelmpl MainframeBankingSystemException
——

GetBalanceResponse
I
I ——

GetBalanceRequest
N

BankingSystemConnection
[ —

—
3 ">~ #receives

J ,.--~" +sends g >
AbstractRequest AbstractResponse
I
———1 C——1



https://c4model.com/

[6] [7] [8]

A process

Product backlog

Process requirements Detect anti-patterns

Y

Y

Derive drivers

»  Make decisions

Feedback loops

Sprint

Y Y

Sprint
planning

Feedback loops

retrospective

Sprint backlog

Sprint review

Delivery
increment




Explicit
software
architecture
sounds great!







Creating the first version (including the
setup and templates).

= Maintenance effort:

* Update as the
implementation/process changes.

= Ensure consistency (especially
problematic in large documents)

= Consuming the documentation:

= How easy it is to find the information
that stakeholders need?

" How easy it is to understand the
information?

Overhead (documenting
abstractions and
processes)

Follow a process

= Overhead vs benefits?



Actually, about that coding Margareth...




Explicit vs Implicit
architecture

= We always do the same set of things (either
explicitly or implicitly)
= Problem
= Solution
= Coding
= Process

= And we can fail in both cases (in a different
way)



A YT

R et o a

AL,

4




What are we trying to solve? Why are we
trying to make something explicit?

Why

Understanding motivation for documentation and its
intended use determines what should be documented.

v

How

Define terminology, modelling profile, views,
processes, and tools to support documentation.

What

Document architectural abstractions
with explicit benefits to stakeholders



Why

?

Motivation E.g., onboarding new members.
Producer E.g., Team lead and a senior software engineer
Consumer E.g., New team member

What would consumer gain from this?

E.g., setup IDE, setup plugins, download code.

To what benefit would consumers use
this knowledge?

E.g., ready to compile code, run tests.




What are we trying to solve?

Why

Understanding motivation for documentation and its
intended use determines what should be documented.

v

How

Define terminology, modelling profile, views,
processes, and tools to support documentation.

What

Document architectural abstractions
with explicit benefits to stakeholders



How? (considering why)

Process for ensuring

‘ Modelling profile ® Views Q traceability and
consistency

£+  Process for y Tools Documentation
< introducing changes \ formats



What are we trying to solve?

Motivation E.g., onboarding new members.
Producer E.g., Team lead and a senior software engineer
Consumer E.g., New team member

What would consumer gain from this?

E.g., setup IDE, setup plugins, download code.

To what benefit would consumers use
this knowledge?

E.g., ready to compile code, run tests.

; Modelling profile

@ Views

Process for changing y’ Tools
N

the process

Process for ensuring
traceability and
consistency

Documentation
formats

Why

Understanding motivation for documentation and its
intended use determines what should be documented.

v

How

Define terminology, modelling profile, views,
processes, and tools to support documentation.

What

Document architectural abstractions
with explicit benefits to stakeholders



Cost/benefits analysis

v Iz

Understand the need Customize existing practices Maximize benefits/minimize
overhead




Oh wait, what is software
architecture?




Software architecture

* “The software architecture of a system is the set of structures needed to
reason about the system. These structures comprise software elements,
relations among them, and properties of both.”, Bass, Clements, & Kazman,
Software Architecture in Practice, Fourth Edition, 2021

e “Software Architecture is the fundamental organization of a system
embodied in its components, their relationships to each other and to the
environment and the principles guiding its design and evolution” (I1SO,
2011)

* “Software architecture is the set of components needed to reason about
the system, design decisions behind those components, and their
discarded design alternatives.”, Jasmin Jahic






Al in Software Engineering

= Software Architecture
B o the end o = Need to understand context around problems and
fer_ob.select-1 solutions

ntext.scene.objects.activg
" "Selected” tr(modifier 0 .
j:rﬁoiiog.seieitri 0 i . C0d|ng

bpy . context. selected_ob

.nta.objects[one.name].S(- , - TeStIng

wrint("please select exacthy

| |
_ OPERATOR CLASSES -~ Deployment

= Delivery

Other ops

L

r)-
P s.OPe: wta zhe selecte®
irro -

r mirror_X




How a t-shirt stopped this autonomous car in its tracks - https://www.carexpert.com.au/car-
news/how-a-t-shirt-stopped-this-autonomous-car-in-its-tracks




Waterfall

System
requirements

Y

Software
requirements

Y

Analysis

Y

Program
design

Coding

Y

Testing

A 4

Operations

Time

»
>



Watertall in the Age of Al

System System
requirements requirements
A 4 A
Software Software
requirements requirements
A 4 Y
Analysis Analysis
Program Program |
design design
Y

:

Testing v
« C

Operations
)

»
>

A

Time Time



Agile Scrum

Product backlog

Sprint
retrospective

Y

Sprint
planning

Sprint review

Sprint backlog

A

Delivery
increment




Agile Scrum in the Age of

Product backlog

Sprint

retrospective

Y

Sprint
planning

Sprint backlog

Sprint review

Al

Delivery
increment

Y

Product backlog

Sprint
planning

Sprint backlog

Coding, testing,
operations,
delivery
increment




What is the Value that Humans bring?

Generate
Talk to code for Ask Al to test,
customers individual deploy, deliver
problems

Validate

Humans




| know how to
code

(@

)/

— N

O »

o

O

O D

Growth

Business

Success

Strategy
ne

r
Busi

mﬁ

gsl bl

SO\ Ut g
Sue

BUS\ness

Say

| a8t

es

Busi

Gr 0



No one cares Margareth — we have Al




Typical Example of Digitalisation

Bakery — Two Pigeons




Bakery Digitalisation

L]

Online presence

Website (presentation, orders)

Social media (updates)

Accounting software



How can Al help a
bakery owner with
digitalisation (in
future)?

= Go to GitHub, there is a CoPilot

= |t will generate all the code
(Node.JS, JavaScript, can even
create a database)

= Then, you just need to patch it
(use ChatGPT) and deploy it

= Oh, you will need a server
= And hosting

= And perhaps a cloud-based
solution




m According to the German Bread Institute,
over 3,000 different types of bread and
other baked goods are sold in Germany
every day.”

= https://www.germany.travel/en/experienc
T - e-enjoy/german-bread-and-baked-
%mﬁﬁm - Ua/w(%- 2 goods.html#:~:text=German%20bread%?20
<10, 43% J and%20baked%20goods&text=According%
20t0%20the%20German%20Bread,sold%?2
0in%20Germany%20every%20day.

&

- 18
N

k‘:

| q’la.mm
NRRNR

AR R Y
\\ .

\

|


https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day
https://www.germany.travel/en/experience-enjoy/german-bread-and-baked-goods.html#:~:text=German%20bread%20and%20baked%20goods&text=According%20to%20the%20German%20Bread,sold%20in%20Germany%20every%20day

We know
Software

. _ We just do not
Engineering know how

will change




Ongoing Projects

» Al and Software Architecture: reusing solutions [9]
" Benefits and overheads: Al vs human, a coding project.

" Al in Software Engineering manifesto: what do we hope to gain from
Al in Software Engineering?

" jj542@cam.ac.uk



Managing
Software

Module 1

Choose your project and
explore common terminologies,
methods, hardware and models
in architecture management.

Review the key points of
software architecture and
consider how you would apply
these to your project.

Module 3

Explore modelling profiles
and apply it to your project

Architecture

= https://advanceonline.cam.ac.u
k/courses/managing-software-

architecture

Module 4

Review examples of
commeon architectural styles,
patterns and factics.

Module 5

Explore continuous
software delivery and
define your toolchain.

Module 6

Review the entire process

of the architectural model and
prepare final projec

for submission.



https://advanceonline.cam.ac.uk/courses/managing-software-architecture
https://advanceonline.cam.ac.uk/courses/managing-software-architecture
https://advanceonline.cam.ac.uk/courses/managing-software-architecture

References

= [1] K. Smolander, "Four metaphors of architecture in software organizations: finding out the meaning of architecture in practice,"
Proceedings International Symposium on Empirical Software Engineering, Nara, Japan, 2002, pp. 211-221, doi:
10.1109/ISESE.2002.1166942.

= [2] Concept of Operations, Leon Osborne, Jeffrey Brummond, Robert Hart, Mohsen (Moe) Zarean Ph.D., P.E, Steven Conger,
example https:/ﬁveb.archive.org/web/20090705102900/http://www.itsdocs.fhwa. ot.gov/jpodocs/repts_te/14158.htm

= I[3] Jens Knogel and Matthias Naab. 2016. Pragmatic Evaluation of Software Architectures (1st. ed.). Springer Publishing Company,
ncorporated.

= [4] Philippe Kruchten: The 4+1 View Model of Architecture. IEEE Softw. 12(6): 42-50 (1995)
= [5] https://c4Amodel.com/

= {/(\3/] antinuous Architecture in Practice: Software Architecture in the Age of Agility and DevOps, Murat Erder, Pierre Pureur, Eoin
oods

= [7] F. Helwani and J. Jahi¢, "ACIA: A Methodology for identification of Architectural Design Patterns that support Continuous
Integration based on Continuous Assessment," 2022 IEEE 19th International Conference on Software Architecture Companion
(ICSA-C), Honolulu, HI, USA, 2022, pp. 198-205, doi: 10.1109/I1CSA-C54293.2022.00046.

= [8] Brian Fitzgerald, Klaas-Jan Stol, Continuous software engineering: A roadmap and agenda, Journal of Systems and Software,
Volume 123, 2017

= [9] Jasmin Jahic, "State of Practice: LLMs in Software Engineering and Software Architecture", International Conference on
Software Architecture (Hyderabad, India) (ICSA 2024)



Questions




	Slide 1: Software architecture: between "rigid process" and "somehow I manage"
	Slide 2: Agenda
	Slide 3: Software engineering – Scenario 1
	Slide 4: Software engineering – Scenario 2
	Slide 5: The Problem
	Slide 6: The Problem domain
	Slide 7: How do I personally understand the problem?
	Slide 8: How does a team understand the problem? Common understanding?
	Slide 9
	Slide 10: The Solution domain
	Slide 11: How does a team understand the solution and what needs to be coded? Common understanding?
	Slide 12: Issues
	Slide 13: This actually works! (sometimes)
	Slide 14: Well, if you are…
	Slide 15: Results
	Slide 16: I know how to code!
	Slide 17: No one cares Margareth
	Slide 18: Projects in Software Engineering
	Slide 19: Additional activities
	Slide 20: We want to
	Slide 21: Superhero developers
	Slide 22: Can we really get people with all of these qualities?
	Slide 23: Implicit software architecture
	Slide 24: Make all these actions explicit…
	Slide 25: Impractical but relevant – V model
	Slide 26
	Slide 27: Specification of architecture drivers
	Slide 28: quality properties Template 
	Slide 29: Design Decision Template
	Slide 30: Architecture solution Template
	Slide 31: How to manage decisions and guide the implementation?
	Slide 32: Software System Architecture
	Slide 33
	Slide 34: Abstraction is the key
	Slide 35: Architecture components
	Slide 36: Architecture components
	Slide 37: Component interfaces
	Slide 38: Component interfaces
	Slide 39: Text is not the best abstraction
	Slide 40
	Slide 41: Visual documentation – what is the difference?
	Slide 42: Modelling profiles
	Slide 43: Diagram(s) using the modelling profile
	Slide 44
	Slide 45: Architectural views
	Slide 46: C4 architecture views - Context
	Slide 47: C4 architecture views - Container
	Slide 48: C4 architecture views - Component
	Slide 49: C4 architecture views - Code
	Slide 50: A process
	Slide 51: Explicit software architecture sounds great!
	Slide 52: Who does this? Almost no one.
	Slide 53: Overhead (documenting abstractions and processes)
	Slide 54: Actually, about that coding Margareth…
	Slide 55: Explicit vs Implicit architecture
	Slide 56: Customization
	Slide 57: What are we trying to solve? Why are we trying to make something explicit?
	Slide 58: Why?
	Slide 59: What are we trying to solve?
	Slide 60: How? (considering why)
	Slide 61: What are we trying to solve?
	Slide 62: Cost/benefits analysis
	Slide 63: Oh wait, what is software architecture?
	Slide 64: Software architecture
	Slide 65: Don´t forget about AI
	Slide 66: AI in Software Engineering
	Slide 67: How a t-shirt stopped this autonomous car in its tracks - https://www.carexpert.com.au/car-news/how-a-t-shirt-stopped-this-autonomous-car-in-its-tracks
	Slide 68: Waterfall
	Slide 69: Waterfall in the Age of AI
	Slide 70: Agile Scrum
	Slide 71: Agile Scrum in the Age of AI
	Slide 72: What is the Value that Humans bring?
	Slide 73: I know how to code!
	Slide 74: No one cares Margareth – we have AI
	Slide 75: Typical Example of Digitalisation
	Slide 76: Bakery Digitalisation
	Slide 77: How can AI help a bakery owner with digitalisation (in future)?
	Slide 78
	Slide 79: We know Software Engineering will change
	Slide 80: Ongoing Projects
	Slide 81: Managing Software Architecture
	Slide 82: References
	Slide 83: Questions

